QSAR Modeling Using Chirality Descriptors Derived from Molecular Topology
نویسندگان
چکیده
Topological descriptors of chemical structures (such as molecular connectivity indices) are widely used in Quantitative Structure-Activity Relationships (QSAR) studies. Unfortunately, these descriptors lack the ability to discriminate between stereoisomers, which limits their application in QSAR. To circumvent this problem, we recently introduced chirality descriptors derived from molecular graphs and applied them in QSAR studies of ecdysteroids (Golbraikh A.; Bonchev, D.; Tropsha, A. J. Chem. Inf. Comput. Sci. 2001,41, 147-158). In this paper, we extend our earlier work by applying chirality descriptors to four data sets containing chiral compounds. All models were derived with the k-nearest neighbors (kNN) QSAR method developed in our laboratory (Zheng, W.; Tropsha, A. J. Chem. Inf. Comput. Sci. 2000, 40, 185-194). They were validated using the same training and test sets that were employed in various, mostly 3D-QSAR, investigations published by other authors. We show that for all data sets 2D-QSAR models that use a combination of chirality descriptors with conventional (chirality insensitive) topological descriptors afford better or similar predictive ability as compared to models generated with 3D-QSAR approaches. The results presented in this paper reassure that 2D-QSAR modeling provides a powerful alternative to 3D-QSAR.
منابع مشابه
Novel ZE-Isomerism Descriptors Derived from Molecular Topology and Their Application to QSAR Analysis
We introduce several series of novel ZE-isomerism descriptors derived directly from two-dimensional molecular topology. These descriptors make use of a quantity named ZE-isomerism correction, which is added to the vertex degrees of atoms connected by double bonds in Z and E configurations. This approach is similar to the one described previously for topological chirality descriptors (Golbraikh,...
متن کاملQSAR modeling of antimicrobial activity with some novel 1,2,4 triazole derivatives, comparison with experimental study
Our study performed upon an extended series of 28 compounds of 1,2,4-triazole derivatives that demonstrate substantial in vitro antimicrobial activities by serial plate dilution method, using quantitative structure-activity relationship (QSAR) methods that imply analysis of correlations and multiple linear regression (MLR); a significant collection of molecular descriptors was used e.g., Edge a...
متن کاملQSAR models to predict physico-chemical Properties of some barbiturate derivatives using molecular descriptors and genetic algorithm- multiple linear regressions
In this study the relationship between choosing appropriate descriptors by genetic algorithm to the Polarizability (POL), Molar Refractivity (MR) and Octanol/water Partition Coefficient (LogP) of barbiturates is studied. The chemical structures of the molecules were optimized using ab initio 6-31G basis set method and Polak-Ribiere algorithm with conjugated gradient within HyperChem 8.0 environ...
متن کاملIn-silico prediction of Cellular Responses to Polymeric Biomaterials from Their Molecular Descriptors
In this work quantitative structure activity relationship (QSAR) methodology was applied for modeling and prediction of cellular response to polymers that have been designed for tissue engineering. After calculation and screening of molecular descriptors, linear and nonlinear models were developed by using multiple linear regressions (MLR) and artificial neural network (ANN) methods. The root m...
متن کاملQSAR study of retention index of different alkanes and alkenes using different chemometrics methods
An important property that has been extensively studied in quantitative structure activityrelationship (QSAR) is the chromatographic retention index. QSAR study is suggested for theprediction of retention index of alkanes and alkenes compounds. Modeling of the retention indexof alkanes and alkenes compounds as a function of molecular structures was established bydifferent chemometrics methods. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of chemical information and computer sciences
دوره 43 1 شماره
صفحات -
تاریخ انتشار 2003